Старшие. Рыцари, лжецы и немножко хитрецов.

Со старшими мы сегодня разговаривали про рыцарей и лжецов. Начали с разговора о формализации высказываний. Поговорили про отрицания и построили противоположные высказывания.

Дальше в формате парной работы решали короткие задачи про рыцарей и лжецов.

Потом добавили хитрецов, и немножко в них поиграли. Детей было всего четверо. Я дала троим записки «рыцарь», «лжец» и «хитрец». Персонажи знали, кто есть кто. А четвертый должен задавая вопросы, определить, кто есть кто. Вы знаете, как это сделать?

Потом еще порешали разные задачи. В частности, из прекрасного совершенно бесплатного курса от Тинькофф «Математика решает». Это курс для детей 4-6 класса. Каждая тема состоит из видеоразбора нескольких задач и подборки задач для самостоятельного решения, которые проверяются автоматически. Задачи довольно симпатичные.

Одна из задач такая.
«В комнате стоят 20 красных и синих стульев. На каждом из них сидит рыцарь или лжец, есть и те, и другие. Когда каждого спросили, на какого цвета стуле он сидит, он ответил, что на синем. Потом сидящие каким-то образом поменялись. После этого половина сидящих ответила, что сидит на красном стуле. Сколько рыцарей сидит на красном стуле? «

Старшие. Рыцари, лжецы и хитрецы.

Сегодня старших было меньше, чем обычно, и урок прошёл очень тихо и уютно.
Поскольку рыцари и лжецы дались с большим трудом, а сегодня мне хотелось поговорить про ещё более сложную задачу — рыцарей, лжецов и хитрецов(тех, кто хочет — говорит правду, хочет — лжет), то мы много поиграли в ролевые игры. Начали с того, что все, кроме одного, вытащили по бумажке с надписью — или лжец, или рыцарь, или хитрец. И этот кто-то пытался отгадать, кто есть кто, задавая разные вопросы. И быстро стало понятно, что если неизвестно, сколько кого, да ещё они и сами не знают друг про друга, отгадать, кто есть кто, очень сложно — и чаще всего невозможно. Особенно если хитрецы будут действительно хитро себя вести. А потом меняли задачу — когда известно сколько кого и пробовали определить,и тоже чаще всего не удавалось, если хитрецы ведут себя действительно хитро. Все хотели побыть хитрецом, поэтому пришлось играть несколько раз. А в конце разбирались с довольно сложной задачей. Сами дети не могли. Пришлось задавать наводящие вопросы.


«В компании три рыцаря и один хитрец. Все члены компании знают, кто есть кто. Задайте ровно три вопроса членам команды, на которые можно отвечать только да или нет и определите, кто хитрец. (Вопрос каждый раз задаётся конкретному человеку. )»
А взрослые смогут придумать, какие вопросы задавать и кому?

А потом я решила, что мозгокрутских задач хватит, и старшие тоже порешали головоломки про палатки, но посложнее.

В инстаграмме предложили ещё одну хорошую задачу. Путешественник встретил Лжеца, Хитреца и Переменчика (тот, кто каждый раз меняется — говорит то правду, то ложь). Как с помощью вопросов да/нет определить, кто есть кто?